3.8.98 \(\int \frac {(c+d x)^{5/2}}{x (a+b x)^{5/2}} \, dx\) [798]

Optimal. Leaf size=157 \[ \frac {2 \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right ) \sqrt {c+d x}}{\sqrt {a+b x}}+\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}-\frac {2 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{5/2}}+\frac {2 d^{5/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{5/2}} \]

[Out]

2/3*(-a*d+b*c)*(d*x+c)^(3/2)/a/b/(b*x+a)^(3/2)-2*c^(5/2)*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/
a^(5/2)+2*d^(5/2)*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/b^(5/2)+2*(c^2/a^2-d^2/b^2)*(d*x+c)^(1/
2)/(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {100, 155, 163, 65, 223, 212, 95, 214} \begin {gather*} -\frac {2 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{5/2}}+\frac {2 \sqrt {c+d x} \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right )}{\sqrt {a+b x}}+\frac {2 d^{5/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{5/2}}+\frac {2 (c+d x)^{3/2} (b c-a d)}{3 a b (a+b x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(5/2)/(x*(a + b*x)^(5/2)),x]

[Out]

(2*(c^2/a^2 - d^2/b^2)*Sqrt[c + d*x])/Sqrt[a + b*x] + (2*(b*c - a*d)*(c + d*x)^(3/2))/(3*a*b*(a + b*x)^(3/2))
- (2*c^(5/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/a^(5/2) + (2*d^(5/2)*ArcTanh[(Sqrt[d]*S
qrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/b^(5/2)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{5/2}}{x (a+b x)^{5/2}} \, dx &=\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}+\frac {2 \int \frac {\sqrt {c+d x} \left (\frac {3 b c^2}{2}+\frac {3}{2} a d^2 x\right )}{x (a+b x)^{3/2}} \, dx}{3 a b}\\ &=\frac {2 \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right ) \sqrt {c+d x}}{\sqrt {a+b x}}+\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}-\frac {4 \int \frac {-\frac {3}{4} b^2 c^3-\frac {3}{4} a^2 d^3 x}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{3 a^2 b^2}\\ &=\frac {2 \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right ) \sqrt {c+d x}}{\sqrt {a+b x}}+\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}+\frac {c^3 \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{a^2}+\frac {d^3 \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{b^2}\\ &=\frac {2 \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right ) \sqrt {c+d x}}{\sqrt {a+b x}}+\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}+\frac {\left (2 c^3\right ) \text {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{a^2}+\frac {\left (2 d^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b^3}\\ &=\frac {2 \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right ) \sqrt {c+d x}}{\sqrt {a+b x}}+\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}-\frac {2 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{5/2}}+\frac {\left (2 d^3\right ) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{b^3}\\ &=\frac {2 \left (\frac {c^2}{a^2}-\frac {d^2}{b^2}\right ) \sqrt {c+d x}}{\sqrt {a+b x}}+\frac {2 (b c-a d) (c+d x)^{3/2}}{3 a b (a+b x)^{3/2}}-\frac {2 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{5/2}}+\frac {2 d^{5/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.27, size = 193, normalized size = 1.23 \begin {gather*} \frac {2 \left (\frac {b (b c-a d) \sqrt {c+d x} \left (3 a^2 d+3 b^2 c x+4 a b (c+d x)\right )}{a^2 (a+b x)^{3/2}}-\frac {3 b^{5/2} c^{5/2} \sqrt {\frac {b}{d}} \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \left (-b x+\sqrt {\frac {b}{d}} \sqrt {a+b x} \sqrt {c+d x}\right )}{\sqrt {a} \sqrt {b} \sqrt {c}}\right )}{a^{5/2}}-3 \sqrt {\frac {b}{d}} d^3 \log \left (\sqrt {a+b x}-\sqrt {\frac {b}{d}} \sqrt {c+d x}\right )\right )}{3 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(5/2)/(x*(a + b*x)^(5/2)),x]

[Out]

(2*((b*(b*c - a*d)*Sqrt[c + d*x]*(3*a^2*d + 3*b^2*c*x + 4*a*b*(c + d*x)))/(a^2*(a + b*x)^(3/2)) - (3*b^(5/2)*c
^(5/2)*Sqrt[b/d]*Sqrt[d]*ArcTanh[(Sqrt[d]*(-(b*x) + Sqrt[b/d]*Sqrt[a + b*x]*Sqrt[c + d*x]))/(Sqrt[a]*Sqrt[b]*S
qrt[c])])/a^(5/2) - 3*Sqrt[b/d]*d^3*Log[Sqrt[a + b*x] - Sqrt[b/d]*Sqrt[c + d*x]]))/(3*b^3)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(565\) vs. \(2(123)=246\).
time = 0.09, size = 566, normalized size = 3.61

method result size
default \(-\frac {\sqrt {d x +c}\, \left (3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}+2 a c}{x}\right ) \sqrt {b d}\, b^{4} c^{3} x^{2}-3 \ln \left (\frac {2 b d x +2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}\, a^{2} b^{2} d^{3} x^{2}+6 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}+2 a c}{x}\right ) \sqrt {b d}\, a \,b^{3} c^{3} x -6 \ln \left (\frac {2 b d x +2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}\, a^{3} b \,d^{3} x +3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}+2 a c}{x}\right ) \sqrt {b d}\, a^{2} b^{2} c^{3}-3 \ln \left (\frac {2 b d x +2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) \sqrt {a c}\, a^{4} d^{3}+8 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}\, \sqrt {a c}\, a^{2} b \,d^{2} x -2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}\, \sqrt {a c}\, a \,b^{2} c d x -6 b^{3} c^{2} x \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}+6 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}\, \sqrt {a c}\, a^{3} d^{2}+2 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}\, \sqrt {a c}\, a^{2} b c d -8 a \,b^{2} c^{2} \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (d x +c \right ) \left (b x +a \right )}\right )}{3 \sqrt {\left (d x +c \right ) \left (b x +a \right )}\, \sqrt {b d}\, \sqrt {a c}\, \left (b x +a \right )^{\frac {3}{2}} b^{2} a^{2}}\) \(566\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(5/2)/x/(b*x+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*(d*x+c)^(1/2)*(3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((d*x+c)*(b*x+a))^(1/2)+2*a*c)/x)*(b*d)^(1/2)*b^4*c^3*x^2-
3*ln(1/2*(2*b*d*x+2*((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*a^2*b^2*d^3*x^2+6*ln
((a*d*x+b*c*x+2*(a*c)^(1/2)*((d*x+c)*(b*x+a))^(1/2)+2*a*c)/x)*(b*d)^(1/2)*a*b^3*c^3*x-6*ln(1/2*(2*b*d*x+2*((d*
x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*a^3*b*d^3*x+3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*
((d*x+c)*(b*x+a))^(1/2)+2*a*c)/x)*(b*d)^(1/2)*a^2*b^2*c^3-3*ln(1/2*(2*b*d*x+2*((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1
/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*a^4*d^3+8*((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*a^2*b*d^2*x-2*
((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*a*b^2*c*d*x-6*b^3*c^2*x*(b*d)^(1/2)*(a*c)^(1/2)*((d*x+c)*(b*x+
a))^(1/2)+6*((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*a^3*d^2+2*((d*x+c)*(b*x+a))^(1/2)*(b*d)^(1/2)*(a*c
)^(1/2)*a^2*b*c*d-8*a*b^2*c^2*(b*d)^(1/2)*(a*c)^(1/2)*((d*x+c)*(b*x+a))^(1/2))/((d*x+c)*(b*x+a))^(1/2)/(b*d)^(
1/2)/(a*c)^(1/2)/(b*x+a)^(3/2)/b^2/a^2

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/x/(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 313 vs. \(2 (123) = 246\).
time = 1.69, size = 1361, normalized size = 8.67 \begin {gather*} \left [\frac {3 \, {\left (a^{2} b^{2} d^{2} x^{2} + 2 \, a^{3} b d^{2} x + a^{4} d^{2}\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 3 \, {\left (b^{4} c^{2} x^{2} + 2 \, a b^{3} c^{2} x + a^{2} b^{2} c^{2}\right )} \sqrt {\frac {c}{a}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a^{2} c + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {c}{a}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, {\left (4 \, a b^{2} c^{2} - a^{2} b c d - 3 \, a^{3} d^{2} + {\left (3 \, b^{3} c^{2} + a b^{2} c d - 4 \, a^{2} b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{6 \, {\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}, -\frac {6 \, {\left (a^{2} b^{2} d^{2} x^{2} + 2 \, a^{3} b d^{2} x + a^{4} d^{2}\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) - 3 \, {\left (b^{4} c^{2} x^{2} + 2 \, a b^{3} c^{2} x + a^{2} b^{2} c^{2}\right )} \sqrt {\frac {c}{a}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a^{2} c + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {c}{a}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, {\left (4 \, a b^{2} c^{2} - a^{2} b c d - 3 \, a^{3} d^{2} + {\left (3 \, b^{3} c^{2} + a b^{2} c d - 4 \, a^{2} b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{6 \, {\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}, \frac {6 \, {\left (b^{4} c^{2} x^{2} + 2 \, a b^{3} c^{2} x + a^{2} b^{2} c^{2}\right )} \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c d x^{2} + a c^{2} + {\left (b c^{2} + a c d\right )} x\right )}}\right ) + 3 \, {\left (a^{2} b^{2} d^{2} x^{2} + 2 \, a^{3} b d^{2} x + a^{4} d^{2}\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \, {\left (4 \, a b^{2} c^{2} - a^{2} b c d - 3 \, a^{3} d^{2} + {\left (3 \, b^{3} c^{2} + a b^{2} c d - 4 \, a^{2} b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{6 \, {\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}, \frac {3 \, {\left (b^{4} c^{2} x^{2} + 2 \, a b^{3} c^{2} x + a^{2} b^{2} c^{2}\right )} \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c d x^{2} + a c^{2} + {\left (b c^{2} + a c d\right )} x\right )}}\right ) - 3 \, {\left (a^{2} b^{2} d^{2} x^{2} + 2 \, a^{3} b d^{2} x + a^{4} d^{2}\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) + 2 \, {\left (4 \, a b^{2} c^{2} - a^{2} b c d - 3 \, a^{3} d^{2} + {\left (3 \, b^{3} c^{2} + a b^{2} c d - 4 \, a^{2} b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{3 \, {\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/x/(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

[1/6*(3*(a^2*b^2*d^2*x^2 + 2*a^3*b*d^2*x + a^4*d^2)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^
2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + 3*(b^4*c^
2*x^2 + 2*a*b^3*c^2*x + a^2*b^2*c^2)*sqrt(c/a)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a^2
*c + (a*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*(4*a*b^2*c^2
 - a^2*b*c*d - 3*a^3*d^2 + (3*b^3*c^2 + a*b^2*c*d - 4*a^2*b*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a^2*b^4*x^2
+ 2*a^3*b^3*x + a^4*b^2), -1/6*(6*(a^2*b^2*d^2*x^2 + 2*a^3*b*d^2*x + a^4*d^2)*sqrt(-d/b)*arctan(1/2*(2*b*d*x +
 b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d + (b*c*d + a*d^2)*x)) - 3*(b^4*c^2*x^2 +
 2*a*b^3*c^2*x + a^2*b^2*c^2)*sqrt(c/a)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a^2*c + (a
*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) - 4*(4*a*b^2*c^2 - a^2*
b*c*d - 3*a^3*d^2 + (3*b^3*c^2 + a*b^2*c*d - 4*a^2*b*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a^2*b^4*x^2 + 2*a^3
*b^3*x + a^4*b^2), 1/6*(6*(b^4*c^2*x^2 + 2*a*b^3*c^2*x + a^2*b^2*c^2)*sqrt(-c/a)*arctan(1/2*(2*a*c + (b*c + a*
d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) + 3*(a^2*b^2*d^2*x^2 + 2
*a^3*b*d^2*x + a^4*d^2)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a
*b*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(4*a*b^2*c^2 - a^2*b*c*d - 3*a^3*d^
2 + (3*b^3*c^2 + a*b^2*c*d - 4*a^2*b*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a^2*b^4*x^2 + 2*a^3*b^3*x + a^4*b^2
), 1/3*(3*(b^4*c^2*x^2 + 2*a*b^3*c^2*x + a^2*b^2*c^2)*sqrt(-c/a)*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(b*x +
 a)*sqrt(d*x + c)*sqrt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) - 3*(a^2*b^2*d^2*x^2 + 2*a^3*b*d^2*x + a
^4*d^2)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d
+ (b*c*d + a*d^2)*x)) + 2*(4*a*b^2*c^2 - a^2*b*c*d - 3*a^3*d^2 + (3*b^3*c^2 + a*b^2*c*d - 4*a^2*b*d^2)*x)*sqrt
(b*x + a)*sqrt(d*x + c))/(a^2*b^4*x^2 + 2*a^3*b^3*x + a^4*b^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c + d x\right )^{\frac {5}{2}}}{x \left (a + b x\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(5/2)/x/(b*x+a)**(5/2),x)

[Out]

Integral((c + d*x)**(5/2)/(x*(a + b*x)**(5/2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/x/(b*x+a)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c+d\,x\right )}^{5/2}}{x\,{\left (a+b\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(5/2)/(x*(a + b*x)^(5/2)),x)

[Out]

int((c + d*x)^(5/2)/(x*(a + b*x)^(5/2)), x)

________________________________________________________________________________________